NCERT Solutions Class 10 Maths Chapter 8 Introduction to Trigonometry Ex 8.4

NCERT Solutions Class 10 Maths 
Chapter – 8 (Introduction to Trigonometry) 

The NCERT Solutions in English Language for Class 10 Mathematics Chapter – 8 Introduction to Trigonometry  Exercise 8.4 has been provided here to help the students in solving the questions from this exercise. 

Chapter : 8 Introduction to Trigonometry

Exercise – 8.4

1. Express the trigonometric ratios sin A, sec A and tan A in terms of cot A.

Solution –
cosec2A – cot2A = 1
⇒ cosec2A = 1 + cot2A
⇒ 1/sin2A = 1 + cot2A
⇒ sin2A = 1/(1+cot2A)
⇒ sin A = \frac{\pm 1}{\sqrt{1+cot^2A}}

Now,
sin2A = 1/(1+cot2A)
⇒ 1 – cos2A = \frac{1}{(1+cot^2A)}
⇒ cos2A = 1 – \frac{1}{(1+cot^2A)}
⇒ cos2A = (1 + cot2A -1)/(1 + cot2A)
⇒ 1/sec2A = cot2A/(1+cot2A)
⇒ sec A = (1 + cot2A)/cot2A
⇒ sec A =  \frac{\pm \sqrt{1+cot^2A}}{cotA}

also,
tan A = sin A/cos A
cot A = cos A/sin A
⇒ tan A = 1/cot A

2. Write all the other trigonometric ratios of ∠A in terms of sec A.

Solution –  We know that,
sec A = 1/cos A
⇒ cos A = 1/sec A
also,
cos2A + sin2A = 1
⇒ sin2A = 1 – cos2A
⇒ sin2A = 1 – (1/sec2A)
⇒ sin2A = (sec2A – 1)/sec2A
⇒ sin A = \frac{\pm \sqrt{sec^2A -1}}{secA}

also,
sin A = 1/cosec A
⇒ cosec A = 1/sin A
⇒ cosec A = \frac{\pm secA}{\sqrt{sec^2A-1}}

Now,
sec2A – tan2A = 1
⇒ tan2A = sec2A + 1
⇒ tan A = \sqrt{sec^2A +1}

also,
tan A = 1/cot A
⇒ cot A = 1/tan A
⇒ cot A = \frac{\pm1}{\sqrt{sec^2A +1}}

3. Evaluate:
(i) (sin263° + sin227°)/(cos217° + cos273°)
(ii)  sin 25° cos 65° + cos 25° sin 65°

Solution –

(i) (sin263° + sin227°)/(cos217° + cos273°)
= (sin2(90° – 27°) + sin227°) / (cos2(90° – 73°) + cos273°))
= (cos227° + sin227°)/(sin227° + cos273°)
= 1/1 (∵ sin2A + cos2A = 1)
= 1                       

(ii) sin 25° cos 65° + cos 25° sin 65°
= sin(90° – 25°) cos 65° + cos(90° – 65°) sin 65°
= cos 65° cos 65° + sin 65° sin 65°
= cos265° + sin265°
= 1

4. Choose the correct option. Justify your choice.
(i) 9 sec2A – 9 tan2A =
(A) 1                 (B) 9              (C) 8                (D) 0

(ii) (1 + tan θ + sec θ) (1 + cot θ – cosec θ)
(A) 0                 (B) 1              (C) 2                (D) – 1

(iii) (sec A + tan A) (1 – sin A) =
(A) sec A           (B) sin A        (C) cosec A      (D) cos A

(iv) 1+tan2A/1+cot2A =
(A) sec2 A                 (B) -1              (C) cot2A                (D) tan2A

Solution –

(i) 9 sec2A – 9 tan2A
= 9 (sec2A – tan2A)
= 9 × 1 (∵ sec2 A – tan2 A = 1)
= 9
(B) is correct.

(ii) (1 + tan θ + sec θ) (1 + cot θ – cosec θ)
= (1 + sin θ/cos θ + 1/cos θ) (1 + cos θ/sin θ – 1/sin θ)

= (cos θ + sin θ + 1)/cos θ × (sin θ + cos θ – 1)/sin θ
= (cos θ + sin θ)2 – 12/(cos θ sin θ)
= (cos2θ + sin2θ + 2cos θ sin θ – 1)/(cos θ sin θ)
= (1 + 2cos θ sin θ – 1)/(cos θ sin θ)
= (2cos θ sin θ)/(cos θ sin θ)
= 2
(C) is correct

(iii) (secA + tanA) (1 – sinA)
= (1/cos A + sin A/cos A) (1 – sinA)

= (1 + sin A/cos A) (1 – sinA)
= (1 – sin2A)/cos A
= cos2A/cos A
= cos A
(D) is correct.

(iv) (1 + tan2A)/(1 + cot2A) 
= (1 + 1/cot2A)/(1 + cot2A)
= (cot2A + 1/cot2A) /(1 + cot2A)
= 1/cot2A
= tan2A
(D) is correct.

5. Prove the following identities, where the angles involved are acute angles for which the
expressions are defined.
(i) (cosec θ – cot θ)= (1-cos θ)/(1+cos θ)
(ii) \frac{coaA}{1+sinA} + \frac{1+sinA}{cosA}= 2 sec A

(iii) \frac{tan\theta}{1-cot\theta} +\frac{cot\theta}{1-tan\theta} = 1 + sec θ cosec θ [Hint : Write the expression in terms of sin θ and cos θ]
(iv) (1 + sec A)/sec A = sin2A/(1-cos A)  [Hint : Simplify LHS and RHS separately]

(v) \frac{cosA - sin A + 1}{cos A+sinA-1} = cosec A + cot A, using the identity cosec2A = 1 + cot2A.

(vi) \sqrt{\frac{1+sinA}{1-sinA}} = secA + tanA

(vii) \frac{(sin\theta-2sin^3\theta)}{2cos^3\theta-cos\theta} = tan θ

(viii) (sin A + cosec A)+ (cos A + sec A)2 = 7 + tan2A + cot2A

(ix) (cosec A – sin A)(sec A – cos A) = 1/(tan A + cotA) [Hint : Simplify LHS and RHS separately]

(x) \left ( \frac{1+tan^2A}{1+cot^2A} \right ) = \left ( \frac{1-tanA}{1-cotA} \right )^2 = tan^2A

Solution –

(i) (cosec θ – cot θ)= (1 – cos θ)/(1 + cos θ)
L.H.S. = (cosec θ – cot θ)2
= (cosec2θ + cot2θ – 2cosec θ cot θ)

= (1/sin2θ + cos2θ/sin2θ – 2cos θ/sin2θ)
= (1 + cos2θ – 2cos θ)/(1 – cos2θ)
= (1 – cos θ)2/(1 – cosθ)(1 + cos θ)
= (1 – cos θ)/(1 + cos θ)
= R.H.S.

(ii) \frac{coaA}{1+sinA} + \frac{1+sinA}{cosA}= 2 sec A
L.H.S. = \frac{coaA}{1+sinA} + \frac{1+sinA}{cosA}
= [cos2A + (1 + sin A)2]/(1 + sin A) cos A
= (cos2A + sin2A + 1 + 2sin A)/(1 + sin A) cos A
Since cos2A + sin2A = 1
= (1 + 1 + 2sin A)/(1 + sin A) cos A
= (2+ 2sin A)/(1 + sin A) cos A
= 2(1 + sin A)/(1 + sin A)cos A
= 2/cos A
= 2 sec A
= R.H.S.

(iii) \frac{tan\theta}{1-cot\theta} +\frac{cot\theta}{1-tan\theta} = 1 + sec θ cosec θ

L.H.S. = \frac{tan\theta}{1-cot\theta} +\frac{cot\theta}{1-tan\theta}  

We know that tan θ = sin θ/cos θ
cot θ = cos θ/sin θ
= [(sin θ/cos θ)/1 – (cos θ/sin θ)] + [(cos θ/sin θ)/1 – (sin θ/cos θ)]
= [(sin θ/cos θ)/(sin θ – cos θ)/sin θ] + [(cos θ/sin θ)/(cos θ – sin θ)/cos θ]
= sin2θ/[cos θ(sin θ – cos θ)] + cos2θ/[sin θ(cos θ – sin θ)]
= sin2θ/[cos θ(sin θ – cos θ)] – cos2θ/[sin θ(sin θ – cos θ)]
= 1/(sin θ – cos θ) [(sin2θ/cos θ) – (cos2θ/sin θ)]
= 1/(sin θ – cos θ) × [(sin3θ – cos3θ)/sin θ cos θ]
= [(sin θ – cos θ)(sin2θ + cos2θ + sin θ cos θ)]/[(sin θ – cos θ)sin θ cos θ]
= (1 + sin θ cos θ)/sin θ cos θ
= 1/sin θ cos θ + 1
= 1 + sec θ cosec θ
= R.H.S.

(iv) \frac{1+secA}{secA} = \frac{sin^2A}{1-cosA}

First find the simplified form of L.H.S
L.H.S. = \frac{1+secA}{secA}
= \frac{1+\frac{1}{cosA}}{\frac{1}{cosA}}

= \frac{\frac{cosA+1}{cosA}}{\frac{1}{cosA}}
= cos A + 1

R.H.S. = sin2A/(1-cos A)
= \frac{(1-cos^2A)}{1-cosA}

= (1 – cos A)(1 + cos A)/(1 – cos A)
= cos A + 1
L.H.S. = R.H.S.
Hence proved

(v) \frac{cosA - sin A + 1}{cos A+sinA-1} = cosec A + cot A

L.H.S. = \frac{cosA - sin A + 1}{cos A+sinA-1}

= \frac{\frac{cosA - sin A + 1}{sinA}}{\frac{cos A+sinA-1}{sinA}}
We know that cos A/sin A = cot A and 1/sin A = cosec A
= (cot A – 1 + cosec A)/(cot A + 1 – cosec A)
= (cot A – cosec2A + cot2A + cosec A)/(cot A + 1 – cosec A)     (using cosec2A – cot2A = 1)
= ((cot A + cosec A) – (cosec2A – cot2A))/(cot A + 1 – cosec A)
= ((cot A + cosec A) – (cosec A + cot A)(cosec A – cot A))/(1 – cosec A + cot A)
=  (cot A + cosec A)(1 – cosec A + cot A)/(1 – cosec A + cot A)
=  cot A + cosec A
= R.H.S.
Hence Proved

(vi) \sqrt{\frac{1+sinA}{1-sinA}} = secA + tanA

L.H.S. = \sqrt{\frac{1+sinA}{1-sinA}}

= \sqrt{\frac{\frac{1+sinA}{cosA}}{\frac{1-sinA}{cosA}}}
We know that 1/cos A = sec A and sin A/cos A = tan A
= \sqrt{\frac{secA+tanA}{secA-tanA}}
Now using rationalization, we get

= \sqrt{\frac{secA+tanA}{secA-tanA}} × \sqrt{\frac{secA + tanA}{secA + tanA}}

= \sqrt{\frac{(secA+tanA)^2}{sec^2A-tan^2A}}

= (sec A + tan A)/1
= sec A + tan A
= R.H.S
Hence proved

(vii) \frac{(sin\theta-2sin^3\theta)}{2cos^3\theta-cos\theta} = tan θ

L.H.S. = \frac{(sin\theta-2sin^3\theta)}{2cos^3\theta-cos\theta}
= (sin θ (1 – 2sin2θ))/(cos θ(2cos2θ – 1))
We know that sin2θ = 1 – cos2θ
= (sin θ(1 – 2(1 – cos2θ))/(cos θ(2cos2θ – 1))
= (sin θ(2cos2θ – 1))/(cos θ(2cos2θ -1))
= sin θ/ cos θ
= tan θ
= R.H.S.
Hence proved

(viii) (sin A + cosec A)+ (cos A + sec A)2 = 7+tan2A+cot2A
L.H.S. = (sin A + cosec A)+ (cos A + sec A)2
(a+b)2 = a2 + b2 +2ab
= (sin2A + cosec2A + 2 sin A cosec A) + (cos2A + sec2A + 2 cos A sec A)
= (sin2A + cos2A) + 2 sin A(1/sin A) + 2 cos A(1/cos A) + 1 + tan2A + 1 + cot2A
= 1 + 2 + 2 + 2 + tan2A + cot2A
= 7 + tan2A + cot2A
= R.H.S.
Hence proved.

(ix) (cosec A – sin A)(sec A – cos A) = 1/(tan A+cotA)
L.H.S. = (cosec A – sin A)(sec A – cos A)
= (1/sin A – sin A)(1/cos A – cos A)
= ((1 – sin2A)/sin A][(1 – cos2A)/cos A)
= (cos2A/sin A) × (sin2A/cos A)
= cos A sin A

R.H.S. = 1/(tan A + cotA)
= 1/(sin A/cos A  + cos A/sin A)
= 1/[(sin2A + cos2A)/sin A cos A]
= cos A sin A

L.H.S. = R.H.S.
Hence proved

(x) \left ( \frac{1+tan^2A}{1+cot^2A} \right ) = \left ( \frac{1-tanA}{1-cotA} \right )^2 = tan^2A

L.H.S. = \left ( \frac{1+tan^2A}{1+cot^2A} \right )
= (1 + tan2A)/(1 + 1/tan2A))
= (1 + tan2A)/((1 + tan2A)/tan2A)
= tan2A

Similarly,

\left ( \frac{1-tanA}{1-cotA} \right )^2 = tan2A

Hence proved

Go Back To Chapters

Leave a Reply

Your email address will not be published.

Latest from Class 10 Maths