NCERT Solutions Class 10 Maths
Chapter – 8 (Introduction to Trigonometry)
The NCERT Solutions in English Language for Class 10 Mathematics Chapter – 8 Introduction to Trigonometry Exercise 8.4 has been provided here to help the students in solving the questions from this exercise.
Chapter : 8 Introduction to Trigonometry
- NCERT Class 10 Maths Solution Ex – 8.1
- NCERT Class 10 Maths Solution Ex – 8.2
- NCERT Class 10 Maths Solution Ex – 8.3
Exercise – 8.4
1. Express the trigonometric ratios sin A, sec A and tan A in terms of cot A.
Solution –
cosec2A – cot2A = 1
⇒ cosec2A = 1 + cot2A
⇒ 1/sin2A = 1 + cot2A
⇒ sin2A = 1/(1+cot2A)
⇒ sin A =
Now,
sin2A = 1/(1+cot2A)
⇒ 1 – cos2A =
⇒ cos2A = 1 –
⇒ cos2A = (1 + cot2A -1)/(1 + cot2A)
⇒ 1/sec2A = cot2A/(1+cot2A)
⇒ sec A = (1 + cot2A)/cot2A
⇒ sec A =
also,
tan A = sin A/cos A
cot A = cos A/sin A
⇒ tan A = 1/cot A
2. Write all the other trigonometric ratios of ∠A in terms of sec A.
Solution – We know that,
sec A = 1/cos A
⇒ cos A = 1/sec A
also,
cos2A + sin2A = 1
⇒ sin2A = 1 – cos2A
⇒ sin2A = 1 – (1/sec2A)
⇒ sin2A = (sec2A – 1)/sec2A
⇒ sin A =
also,
sin A = 1/cosec A
⇒ cosec A = 1/sin A
⇒ cosec A =
Now,
sec2A – tan2A = 1
⇒ tan2A = sec2A + 1
⇒ tan A =
also,
tan A = 1/cot A
⇒ cot A = 1/tan A
⇒ cot A =
3. Evaluate:
(i) (sin263° + sin227°)/(cos217° + cos273°)
(ii) sin 25° cos 65° + cos 25° sin 65°
Solution –
(i) (sin263° + sin227°)/(cos217° + cos273°)
= (sin2(90° – 27°) + sin227°) / (cos2(90° – 73°) + cos273°))
= (cos227° + sin227°)/(sin227° + cos273°)
= 1/1 (∵ sin2A + cos2A = 1)
= 1
(ii) sin 25° cos 65° + cos 25° sin 65°
= sin(90° – 25°) cos 65° + cos(90° – 65°) sin 65°
= cos 65° cos 65° + sin 65° sin 65°
= cos265° + sin265°
= 1
4. Choose the correct option. Justify your choice.
(i) 9 sec2A – 9 tan2A =
(A) 1 (B) 9 (C) 8 (D) 0
(ii) (1 + tan θ + sec θ) (1 + cot θ – cosec θ)
(A) 0 (B) 1 (C) 2 (D) – 1
(iii) (sec A + tan A) (1 – sin A) =
(A) sec A (B) sin A (C) cosec A (D) cos A
(iv) 1+tan2A/1+cot2A =
(A) sec2 A (B) -1 (C) cot2A (D) tan2A
Solution –
(i) 9 sec2A – 9 tan2A
= 9 (sec2A – tan2A)
= 9 × 1 (∵ sec2 A – tan2 A = 1)
= 9
(B) is correct.
(ii) (1 + tan θ + sec θ) (1 + cot θ – cosec θ)
= (1 + sin θ/cos θ + 1/cos θ) (1 + cos θ/sin θ – 1/sin θ)
= (cos θ + sin θ + 1)/cos θ × (sin θ + cos θ – 1)/sin θ
= (cos θ + sin θ)2 – 12/(cos θ sin θ)
= (cos2θ + sin2θ + 2cos θ sin θ – 1)/(cos θ sin θ)
= (1 + 2cos θ sin θ – 1)/(cos θ sin θ)
= (2cos θ sin θ)/(cos θ sin θ)
= 2
(C) is correct
(iii) (secA + tanA) (1 – sinA)
= (1/cos A + sin A/cos A) (1 – sinA)
= (1 + sin A/cos A) (1 – sinA)
= (1 – sin2A)/cos A
= cos2A/cos A
= cos A
(D) is correct.
(iv) (1 + tan2A)/(1 + cot2A)
= (1 + 1/cot2A)/(1 + cot2A)
= (cot2A + 1/cot2A) /(1 + cot2A)
= 1/cot2A
= tan2A
(D) is correct.
5. Prove the following identities, where the angles involved are acute angles for which the
expressions are defined.
(i) (cosec θ – cot θ)2 = (1-cos θ)/(1+cos θ)
(ii) = 2 sec A
(iii) = 1 + sec θ cosec θ [Hint : Write the expression in terms of sin θ and cos θ]
(iv) (1 + sec A)/sec A = sin2A/(1-cos A) [Hint : Simplify LHS and RHS separately]
(v) = cosec A + cot A, using the identity cosec2A = 1 + cot2A.
(vi)
(vii) = tan θ
(viii) (sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2A + cot2A
(ix) (cosec A – sin A)(sec A – cos A) = 1/(tan A + cotA) [Hint : Simplify LHS and RHS separately]
(x)
Solution –
(i) (cosec θ – cot θ)2 = (1 – cos θ)/(1 + cos θ)
L.H.S. = (cosec θ – cot θ)2
= (cosec2θ + cot2θ – 2cosec θ cot θ)
= (1/sin2θ + cos2θ/sin2θ – 2cos θ/sin2θ)
= (1 + cos2θ – 2cos θ)/(1 – cos2θ)
= (1 – cos θ)2/(1 – cosθ)(1 + cos θ)
= (1 – cos θ)/(1 + cos θ)
= R.H.S.
(ii) = 2 sec A
L.H.S. =
= [cos2A + (1 + sin A)2]/(1 + sin A) cos A
= (cos2A + sin2A + 1 + 2sin A)/(1 + sin A) cos A
Since cos2A + sin2A = 1
= (1 + 1 + 2sin A)/(1 + sin A) cos A
= (2+ 2sin A)/(1 + sin A) cos A
= 2(1 + sin A)/(1 + sin A)cos A
= 2/cos A
= 2 sec A
= R.H.S.
(iii) = 1 + sec θ cosec θ
L.H.S. =
We know that tan θ = sin θ/cos θ
cot θ = cos θ/sin θ
= [(sin θ/cos θ)/1 – (cos θ/sin θ)] + [(cos θ/sin θ)/1 – (sin θ/cos θ)]
= [(sin θ/cos θ)/(sin θ – cos θ)/sin θ] + [(cos θ/sin θ)/(cos θ – sin θ)/cos θ]
= sin2θ/[cos θ(sin θ – cos θ)] + cos2θ/[sin θ(cos θ – sin θ)]
= sin2θ/[cos θ(sin θ – cos θ)] – cos2θ/[sin θ(sin θ – cos θ)]
= 1/(sin θ – cos θ) [(sin2θ/cos θ) – (cos2θ/sin θ)]
= 1/(sin θ – cos θ) × [(sin3θ – cos3θ)/sin θ cos θ]
= [(sin θ – cos θ)(sin2θ + cos2θ + sin θ cos θ)]/[(sin θ – cos θ)sin θ cos θ]
= (1 + sin θ cos θ)/sin θ cos θ
= 1/sin θ cos θ + 1
= 1 + sec θ cosec θ
= R.H.S.
(iv)
First find the simplified form of L.H.S
L.H.S. =
=
=
= cos A + 1
R.H.S. = sin2A/(1-cos A)
=
= (1 – cos A)(1 + cos A)/(1 – cos A)
= cos A + 1
L.H.S. = R.H.S.
Hence proved
(v) = cosec A + cot A
L.H.S. =
=
We know that cos A/sin A = cot A and 1/sin A = cosec A
= (cot A – 1 + cosec A)/(cot A + 1 – cosec A)
= (cot A – cosec2A + cot2A + cosec A)/(cot A + 1 – cosec A) (using cosec2A – cot2A = 1)
= ((cot A + cosec A) – (cosec2A – cot2A))/(cot A + 1 – cosec A)
= ((cot A + cosec A) – (cosec A + cot A)(cosec A – cot A))/(1 – cosec A + cot A)
= (cot A + cosec A)(1 – cosec A + cot A)/(1 – cosec A + cot A)
= cot A + cosec A
= R.H.S.
Hence Proved
(vi)
L.H.S. =
=
We know that 1/cos A = sec A and sin A/cos A = tan A
=
Now using rationalization, we get
= ×
=
= (sec A + tan A)/1
= sec A + tan A
= R.H.S
Hence proved
(vii) = tan θ
L.H.S. =
= (sin θ (1 – 2sin2θ))/(cos θ(2cos2θ – 1))
We know that sin2θ = 1 – cos2θ
= (sin θ(1 – 2(1 – cos2θ))/(cos θ(2cos2θ – 1))
= (sin θ(2cos2θ – 1))/(cos θ(2cos2θ -1))
= sin θ/ cos θ
= tan θ
= R.H.S.
Hence proved
(viii) (sin A + cosec A)2 + (cos A + sec A)2 = 7+tan2A+cot2A
L.H.S. = (sin A + cosec A)2 + (cos A + sec A)2
(a+b)2 = a2 + b2 +2ab
= (sin2A + cosec2A + 2 sin A cosec A) + (cos2A + sec2A + 2 cos A sec A)
= (sin2A + cos2A) + 2 sin A(1/sin A) + 2 cos A(1/cos A) + 1 + tan2A + 1 + cot2A
= 1 + 2 + 2 + 2 + tan2A + cot2A
= 7 + tan2A + cot2A
= R.H.S.
Hence proved.
(ix) (cosec A – sin A)(sec A – cos A) = 1/(tan A+cotA)
L.H.S. = (cosec A – sin A)(sec A – cos A)
= (1/sin A – sin A)(1/cos A – cos A)
= ((1 – sin2A)/sin A][(1 – cos2A)/cos A)
= (cos2A/sin A) × (sin2A/cos A)
= cos A sin A
R.H.S. = 1/(tan A + cotA)
= 1/(sin A/cos A + cos A/sin A)
= 1/[(sin2A + cos2A)/sin A cos A]
= cos A sin A
L.H.S. = R.H.S.
Hence proved
(x)
L.H.S. =
= (1 + tan2A)/(1 + 1/tan2A))
= (1 + tan2A)/((1 + tan2A)/tan2A)
= tan2A
Similarly,
= tan2A
Hence proved