NCERT Solutions Class 10 Maths Chapter 8 Introduction to Trigonometry Ex 8.3

NCERT Solutions Class 10 Maths 
Chapter – 8 (Introduction to Trigonometry) 

The NCERT Solutions in English Language for Class 10 Mathematics Chapter – 8 Introduction to Trigonometry  Exercise 8.3 has been provided here to help the students in solving the questions from this exercise. 

Chapter : 8 Introduction to Trigonometry

Exercise – 8.3

1. Evaluate :
(i) sin 18°/cos 72°
(ii) tan 26°/cot 64°
(iii)  cos 48° – sin 42°
(iv)  cosec 31° – sec 59°

Solution –

(i) sin 18°/cos 72°
= sin (90° – 18°) /cos 72°
= cos 72° /cos 72°
= 1

(ii) tan 26°/cot 64°
= tan (90° – 26°)/cot 64°
= cot 64°/cot 64°
= 1

(iii) cos 48° – sin 42°
= cos (90° – 42°) – sin 42°
= sin 42° – sin 42°
= 0

(iv) cosec 31° – sec 59°
= cosec (90° – 59°) – sec 59°
= sec 59° – sec 59°
= 0

2.  Show that:
(i) tan 48° tan 23° tan 42° tan 67° = 1
(ii) cos 38° cos 52° – sin 38° sin 52° = 0

Solution –

(i) tan 48° tan 23° tan 42° tan 67°
= tan (90° – 42°) tan (90° – 67°) tan 42° tan 67°
= cot 42° cot 67° tan 42° tan 67°
= (cot 42° tan 42°) (cot 67° tan 67°)
(Since, tan A° cot A° = 1)
= 1 × 1
= 1

(ii) cos 38° cos 52° – sin 38° sin 52°
= cos (90° – 52°) cos (90°-38°) – sin 38° sin 52°
= sin 52° sin 38° – sin 38° sin 52°
= 0

3. If tan 2A = cot (A – 18°), where 2A is an acute angle, find the value of A.

Solution –
tan 2A = cot (A – 18°)
We know that tan 2A = cot (90° – 2A)
⇒ cot (90° – 2A) = cot (A -18°)
⇒ 90° – 2A = A – 18°
⇒ 108° = 3A
⇒ A = 108°/3
⇒ A = 36°
Therefore, the value of A = 36°

4.  If tan A = cot B, prove that A + B = 90°.

Solution –
tan A = cot B
We know that cot B = tan (90° – B)
To prove A + B = 90°,
tan A = tan (90° – B)
⇒ A = 90° – B
⇒ A + B = 90°
Hence Proved.

5. If sec 4A = cosec (A – 20°), where 4A is an acute angle, find the value of A.

Solution –
sec 4A = cosec (A – 20°)
We know that sec 4A = cosec (90° – 4A)
⇒ cosec (90° – 4A) = cosec (A – 20°)
⇒ 90° – 4A= A – 20°
⇒ 110° = 5A
⇒ A = 110°/ 5
⇒ A = 22°
Therefore, the value of A = 22°

6. If A, B and C are interior angles of a triangle ABC, then show that
\mathbf{sin\left (\frac{B+C}{2} \right ) = cos \frac{A}{2}}

Solution –  In a triangle, sum of all the interior angles
A + B + C = 180°
⇒ B + C = 180° – A
⇒ (B + C)/2 = (180° – A)/2
⇒ (B + C)/2 = (90° – A/2)
⇒ sin (B + C)/2 = sin (90° – A/2)
⇒ sin (B + C)/2 = cos A/2
Hence proved.

7. Express sin 67° + cos 75° in terms of trigonometric ratios of angles between 0° and 45°.

Solution –
sin 67° + cos 75°
= sin (90° – 23°) + cos (90° – 15°)
= cos 23° + sin 15°

Go Back To Chapters

 

Leave a Reply

Your email address will not be published.

Latest from Class 10 Maths