NCERT Solutions Class 8 Mathematics
Chapter – 2 (Linear Equations in One Variable)
The NCERT Solutions in English Language for Class 8 Mathematics Chapter – 2 Linear Equations in One Variable Exercise 2.3 has been provided here to help the students in solving the questions from this exercise.
Chapter 2: Linear Equations in One Variable
- NCERT Solution Class 8 Maths Ex – 2.1
- NCERT Solution Class 8 Maths Ex – 2.2
- NCERT Solution Class 8 Maths Ex – 2.4
- NCERT Solution Class 8 Maths Ex – 2.5
- NCERT Solution Class 8 Maths Ex – 2.6
Exercise – 2.3
Solve the following equations and check your results.
1. 3x = 2x + 18
Solution –
3x = 2x + 18
⇒ 3x – 2x = 18
⇒ x = 18
Putting the value of x in RHS and LHS,
we get, 3 × 18 = (2 × 18) +18
⇒ 54 = 54
⇒ LHS = RHS
2. 5t – 3 = 3t – 5
Solution –
5t – 3 = 3t – 5
⇒ 5t – 3t = -5 + 3
⇒ 2t = -2
⇒ t = -1
Putting the value of t in RHS and LHS,
we get,
5× (-1) – 3 = 3× (-1) – 5
⇒ -5 – 3 = -3 – 5
⇒ -8 = -8
⇒ LHS = RHS
3. 5x + 9 = 5 + 3x
Solution –
5x + 9 = 5 + 3x
⇒ 5x – 3x = 5 – 9
⇒ 2x = -4
⇒ x = -2
Putting the value of x in RHS and LHS,
we get,
5× (-2) + 9 = 5 + 3× (-2)
⇒ -10 + 9 = 5 + (-6)
⇒ -1 = -1
⇒ LHS = RHS
4. 4z + 3 = 6 + 2z
Solution –
4z + 3 = 6 + 2z
⇒ 4z – 2z = 6 – 3
⇒ 2z = 3
⇒ z =
Putting the value of z in RHS and LHS,
we get,
(4 × ) + 3 = 6 + (2 × )
⇒ 6 + 3 = 6 + 3
⇒ 9 = 9
⇒ LHS = RHS
5. 2x – 1 = 14 – x
Solution –
2x – 1 = 14 – x
⇒ 2x + x = 14 + 1
⇒ 3x = 15
⇒ x = 5
Putting the value of x in RHS and LHS,
we get,
(2 × 5) – 1 = 14 – 5
⇒ 10 – 1 = 9
⇒ 9 = 9
⇒ LHS = RHS
6. 8x + 4 = 3 (x – 1) + 7
Solution –
8x + 4 = 3 (x – 1) + 7
⇒ 8x + 4 = 3x – 3 + 7
⇒ 8x + 4 = 3x + 4
⇒ 8x – 3x = 4 – 4
⇒ 5x = 0
⇒ x = 0
Putting the value of x in RHS and LHS,
we get,
(8 × 0) + 4 = 3 (0 – 1) + 7
⇒ 0 + 4 = 0 – 3 + 7
⇒ 4 = 4
⇒ LHS = RHS
7. x = (x + 10)
Solution –
x = (x + 10)
⇒ x =
⇒ x – = 8
⇒ = 8
⇒ x = 8 × 5
⇒ x = 40
Putting the value of x in RHS and LHS,
we get,
40 = (40 + 10)
⇒ 40 = × 50
⇒ 40 = 4 × 10
⇒ 40 = 40
⇒ LHS = RHS
8. + 1 = + 3
Solution –
+ 1 = + 3
⇒ – = 3 – 1
⇒ = 2
⇒ 3x = 2 × 15
⇒ 3x = 30
⇒ x =
⇒ x = 10
Putting the value of x in RHS and LHS,
we get,
⇒
⇒
⇒
⇒ LHS = RHS
9. 2y + = – y
Solution –
2y + = – y
⇒ 2y + y = –
⇒ 3y =
⇒ 3y =
⇒ 3y = 7
⇒ y =
Putting the value of y in RHS and LHS,
we get,
⇒ (2 × ) + 5/3 = –
⇒ + = –
⇒ =
⇒ =
⇒ LHS = RHS
10. 3m = 5m –
Solution –
3m = 5m –
⇒ 5m – 3m =
⇒ 2m =
⇒ 2m × 5 = 8
⇒ 10m = 8
⇒ m =
⇒ m =
Putting the value of m in RHS and LHS,
we get,
⇒ 3 × = 5 × –
⇒ = 4 –
⇒ =
⇒ =
⇒ LHS = RHS