NCERT Solutions Class 6 Maths Chapter 5 Understanding Elementary Shapes Ex 5.1

NCERT Solutions Class 6 Maths
Chapter – 5 (Understanding Elementary Shapes)

The NCERT Solutions in English Language for Class 6 Mathematics Chapter – 5 Understanding Elementary Shapes Exercise 5.1 has been provided here to help the students in solving the questions from this exercise.

Chapter 5: Understanding Elementary Shapes

Exercise – 5.1

1. What is the disadvantage in comparing line segments by mere observation?

Solutions:

By mere observation we can’t compare the line segments with slight difference in their length. We can’t say which line segment is of greater length. Hence, the chances of errors due to improper viewing are more.

2. Why is it better to use a divider than a ruler, while measuring the length of a line segment?

Solutions:

While using a ruler, chances of error occur due to thickness of the ruler and angular viewing. Hence, using divider accurate measurement is possible.

3. Draw any line segment, say . Take any point C lying in between A and B. Measure the lengths of AB, BC and AC. Is AB = AC + CB?

Solutions:

Since given that point C lie in between A and B. Hence, all points are lying on same line segment . Therefore, for every situation in which point C is lying in between A and B we may say that
AB = AC + CB
For example:
AB is a line segment of length 7 cm and C is a point between A and B such that AC = 3 cm and CB = 4 cm.
Hence, AC + CB = 7 cm
Since, AB = 7 cm
∴ AB = AC + CB is verified.

4. If A, B, C are three points on a line such that AB = 5 cm, BC = 3 cm and AC = 8 cm, which one of them lies between the other two?

Solutions:

Given
AB = 5 cm
BC = 3 cm
AC = 8 cm
Now, it is clear that AC = AB + BC
Hence, point B lies between A and C.

5. Verify, whether D is the mid point of .

NCERT Class 6 Math Solution

Solutions:

Since, it is clear from the figure that AD = DG = 3 units. Hence, D is the midpoint of

6. If B is the mid point of and C is the mid point of , where A, B, C, D lie on a straight line, say why AB = CD?

Solutions:

NCERT Class 6 Math Solution
Given
B is the midpoint of AC. Hence, AB = BC    ——— (1)
C is the midpoint of BD. Hence, BC = CD   ——— (2)
From (1) and (2)
AB = CD is verified

7. Draw five triangles and measure their sides. Check in each case, if the sum of the lengths of any two sides is always less than the third side.

Solutions:

Case 1. In triangle ABC

NCERT Class 6 Math SolutionAB= 2.5 cm
BC = 4.8 cm and
AC = 5.2 cm
AB + BC = 2.5 cm + 4.8 cm = 7.3 cm
As 7.3 > 5.2
∴ AB + BC > AC
Hence, the sum of any two sides of a triangle is greater than the third side.

Case 2. In triangle PQR

NCERT Class 6 Math Solution

PQ = 2 cm
QR = 2.5 cm
PR = 3.5 cm
PQ + QR = 2 cm + 2.5 cm = 4.5 cm
As 4.5 > 3.5
∴ PQ + QR > PR
Hence, the sum of any two sides of a triangle is greater than the third side.

Case 3. In triangle XYZ

NCERT Class 6 Math Solution

XY = 5 cm
YZ = 3 cm
ZX = 6.8 cm
XY + YZ = 5 cm + 3 cm = 8 cm
As 8 > 6.8
∴ XY + YZ > ZX
Hence, the sum of any two sides of a triangle is greater than the third side.

Case 4. In triangle MNS

NCERT Class 6 Math Solution

MN = 2.7 cm
NS = 4 cm
MS = 4.7 cm
MN + NS = 2.7 cm + 4 cm = 6.7 cm
As 6.7 > 4.7
∴ MN + NS > MS
Hence, the sum of any two sides of a triangle is greater than the third side.

Case 5. In triangle KLM

NCERT Class 6 Math Solution

KL = 3.5 cm
LM = 3.5 cm
KM = 3.5 cm
KL + LM = 3.5 cm + 3.5 cm = 7 cm
As 7 cm > 3.5 cm
∴ KL + LM > KM
Hence, the sum of any two sides of a triangle is greater than the third side.

Therefore, we conclude that the sum of any two sides of a triangle is always greater than the third side.

 

NCERT Class 6th Solution 
NCERT Solutions Class 6 English
NCERT Solutions Class 6 Hindi
NCERT Solutions Class 6 Maths
NCERT Solutions Class 6 Sanskrit
NCERT Solutions Class 6 Science
NCERT Solutions Class 6 Social Science

Leave a Reply

Your email address will not be published.

Latest from Class 6 Maths