NCERT Solutions Class 9 Maths Chapter 2 Polynomials Ex 2.5

NCERT Solutions Class 9 Maths 
Chapter – 2 (Polynomials) 

The NCERT Solutions in English Language for Class 9 Mathematics Chapter – 2 Polynomials Exercise 2.5 has been provided here to help the students in solving the questions from this exercise. 

Chapter 2: Polynomials 

Exercise – 2.5 

1. Use suitable identities to find the following products:
(i) (x + 4)(x + 10)
(ii) (x + 8) (x – 10)
(iii) (3x + 4) (3x – 5)
(iv) (y2 + \mathbf{\frac{3}{2}}) (y2 \mathbf{\frac{3}{2}})
(v) (3 – 2x) (3 + 2x)

Answer –

(i) (x + 4)(x + 10)
Using the identity, (x + a)(x + b) = x 2+(a + b)x + ab
Here, a = 4 and b = 10
We get,
(x + 4)(x + 10)
= x2 + (4 + 10)x + (4×10)
= x2 + 14x + 40

(ii) (x + 8)(x – 10)
Using the identity, (x + a)(x + b) = x 2 + (a + b)x + ab
Here, a = 8 and b = −10
We get,
(x + 8)(x − 10)
= x2 + (8 + (−10))x + (8×(−10))
= x2 + (8 − 10)x – 80
= x2 − 2x − 80

(iii) (3x + 4)(3x – 5)
Using the identity, (x + a)(x + b) = x2 + (a + b)x + ab
Here, x = 3x, a = 4 and b = −5
We get,
(3x + 4)(3x − 5)
= (3x)2 + [4+(−5)]3x + 4×(−5)
= 9x2+ 3x(4–5) – 20
= 9x2 – 3x – 20

(iv) (y2 + \mathbf{\frac{3}{2}})(y2 \mathbf{\frac{3}{2}})
Using the identity, (x + y)(x – y) = x2 – y2
Here, x = y2and y = \frac{3}{2}
We get,
(y2 + \frac{3}{2})(y2 \frac{3}{2}

= (y2)2 – (\frac{3}{2})2

= y4 \frac{9}{4}

2. Evaluate the following products without multiplying directly:
(i) 103 × 107
(ii) 95 × 96
(iii) 104 × 96

Answer –
(i) 103 × 107
103 × 107 = (100 + 3) × (100 + 7)
Using identity, [(x + a)(x + b) = x2 + (a + b)x + ab]
Here, x = 100, a = 3 and b = 7
We get,
103 × 107 = (100+3)×(100+7)
⇒ (100)2 + (3+7)100+(3×7)
⇒ 10000 + 1000 + 21
⇒ 11021

(ii) 95 × 96
95 × 96 = (100 – 5)×(100 – 4)
Using identity, [(x – a)(x – b) = x2 – (a + b)x + ab]
Here, x = 100, a = -5 and b = -4
We get,
95 × 96 = (100 – 5)×(100 – 4)
⇒ (100)2 + 100(-5 + (-4)) + (-5×-4)
= 10000 – 900 + 20
= 9120

(iii) 104 × 96
104 × 96 = (100 + 4)×(100 – 4)
Using identity, [(a + b)(a – b)= a2 – b2]
Here, a = 100, b = 4
We get,
104 × 96 = (100 + 4)×(100 – 4)
⇒ (100)2 – (4)2
⇒ 10000 – 16
⇒ 9984

3. Factorize the following using appropriate identities:
(i) 9x2 + 6xy + y2
(ii) 4y2 – 4y + 1
(iii) x2\mathbf{\frac{y^2}{100}}

Answer –
(i) 9x2 + 6xy + y2
= (3x)2 + (2 × 3x × y) + y2
Using identity, x2 + 2xy + y= (x + y)2
Here, x = 3x, y = y
9x2 + 6xy + y2
= (3x)2 + (2 × 3x × y) + y2
= (3x + y)2
= (3x + y) (3x + y)

(ii) 4y2−4y + 1
= (2y)2–(2 × 2y × 1) + 1
Using identity, x2 – 2xy + y= (x – y)2
Here, x = 2y, y = 1
4y2−4y+1
= (2y)2 – (2 × 2y × 1) + 12
= (2y – 1)2
= (2y – 1) (2y – 1)

(iii) x2\mathbf{\frac{y^2}{100}}

= x2 \left ( \frac{y}{10} \right )^2
Using identity, x2 – y= (x – y)(x + y)
Here, x = x, y = \frac{y}{10}
x2 \frac{y^2}{100} 

= x2 \left ( \frac{y}{10} \right )^2

= (x – \frac{y}{10}) (x + \frac{y}{10})

4. Expand each of the following, using suitable identities:
(i) (x + 2y + 4z)2
(ii) (2x − y + z)2
(iii) (−2x + 3y + 2z)2
(iv) (3a – 7b – c)2
(v) (–2x + 5y – 3z)2
(vi) \mathbf{\left [ \frac{1}{4}a - \frac{1}{2}b +1\right ]}^2

Answer –
(i) (x + 2y + 4z)2
Using identity, (x + y + z)2 = x2 + y2 + z2 + 2xy + 2yz + 2zx
Here, x = x, y = 2y and z = 4z
(x + 2y + 4z)2
= x2 + (2y)2 + (4z)2 + (2 × x × 2y) + (2 × 2y × 4z) + (2 × 4z × x)
= x2 + 4y2 + 16z2 + 4xy +16yz + 8xz

(ii) (2x − y + z)2
Using identity, (x + y + z)2 = x2 + y2 + z2 + 2xy + 2yz + 2zx
Here, x = 2x, y = −y, z = z
(2x − y + z)2
= (2x)2 + (−y)2 + z2 + (2 × 2x × −y) + (2 × −y × z) + (2 × z × 2x)
= 4x2 + y2 + z2 – 4xy – 2yz + 4xz

(iii) (−2x + 3y + 2z)2
Using identity, (x + y + z)2 = x2 + y2 + z2 + 2xy + 2yz + 2zx
Here, x = −2x, y = 3y and z = 2z
(−2x + 3y + 2z)2
= (−2x)2 + (3y)2 + (2z)2 + (2 ×−2x × 3y) + (2 × 3y × 2z) + (2 × 2z × −2x)
= 4x2 + 9y2 + 4z2 – 12xy + 12yz – 8xz

(iv) (3a – 7b – c)2
Using identity (x + y + z)2 = x2 + y2 + z2 + 2xy + 2yz + 2zx
Here, x = 3a, y = – 7b and z = – c
(3a – 7b – c)2
= (3a)2 + (– 7b)2 + (– c)2 + (2 × 3a ×– 7b) + (2×– 7b ×– c) + (2× –c × 3a)
= 9a2 + 49b+ c2– 42ab + 14bc – 6ca

(v) (–2x+5y–3z)2
Using identity, (x + y + z)2 = x2 + y2 + z2 + 2xy + 2yz + 2zx
Here, x = –2x, y = 5y and z = – 3z
(–2x + 5y – 3z)= (–2x)2 + (5y)2 + (–3z)2 + (2 × –2x × 5y) + (2 × 5y ×–3z) + (2 × –3z ×–2x)
= 4x2 + 25y+ 9z2 – 20xy – 30yz + 12zx

(vi) \mathbf{\left [ \frac{1}{4}a - \frac{1}{2}b +1\right ]}^2

Using identity, (x + y + z)2 = x2 + y2 + z2 + 2xy + 2yz + 2zx
Here, x = \frac{1}{4}a, y = -\frac{1}{2}b and z = 1
\left [ \frac{1}{4}a - \frac{1}{2}b +1\right ]^2

= \left ( \frac{1}{4}a \right )^2 + \left ( \frac{1}{2}b \right )^2 + 1^2 + \left ( 2\times \frac{1}{4}a\times -\frac{1}{2}b\right ) + \left ( 2\times -\frac{1}{2}b\times 1\right) + \left ( 2\times 1\times \frac{1}{4}a\right )

= \frac{1}{16}a^2 + \frac{1}{4}b^2 + 1 - \frac{2}{8}ab -\frac{2}{2}b +\frac{2}{4}a

= \frac{1}{16}a^2 + \frac{1}{4}b^2 +1 - \frac{1}{4}ab - b + \frac{1}{2}a

5. Factorize:
(i) 4x2 + 9y2 + 16z2 + 12xy – 24yz – 16xz
(ii) 2x2 + y2 + 8z2 – 2√2xy + 4√2yz – 8xz

Answer –
(i) 4x2 + 9y2 + 16z2 + 12xy – 24yz – 16xz
Using identity, (x + y + z)2 = x2 + y2 + z2 + 2xy + 2yz + 2zx
We can say that, x2 + y2 + z2 + 2xy + 2yz + 2zx = (x + y + z)2
4x2 + 9y2 + 16z2 + 12xy – 24yz – 16xz
= (2x)2 + (3y)2 + (−4z)2 + (2 × 2x × 3y) + (2 × 3y × −4z) + (2 × −4z × 2x)
= (2x + 3y – 4z)2
= (2x + 3y – 4z) (2x + 3y – 4z)

(ii) 2x2 + y2 + 8z2 – 2√2xy + 4√2yz – 8xz
Using identity, (x + y + z)2 = x2 + y2 + z2 + 2xy + 2yz + 2zx
We can say that, x2 + y2 + z2 + 2xy + 2yz + 2zx = (x + y + z)2
2x2 + y2 + 8z2 – 2√2xy + 4√2yz – 8xz
= (-√2x)2 + (y)2 + (2√2z)2 + (2 × -√2x × y)+(2 × y × 2√2z) + (2 × 2√2 × −√2x)
= (−√2x + y + 2√2z)2
= (−√2x + y + 2√2z) (−√2x + y + 2√2z)

 

6. Write the following cubes in expanded form:
(i) (2x + 1)3
(ii) (2a − 3b)3
(iii) \mathbf{\left [ \frac{3}{2}x + 1\right ]^3}
(iv) \mathbf{\left [ x-\frac{2}{3}y \right ]^3}

Answer –
(i) (2x + 1)3
Using identity, (x + y)3 = x3 + y3 + 3xy(x + y)
(2x + 1)3 = (2x)3 + 13 + (3 × 2x × 1)(2x + 1)
= 8x3 + 1 + 6x(2x + 1)
= 8x3 + 12x2 + 6x + 1

(ii) (2a − 3b)3
Using identity,(x – y)3 = x3 – y3 – 3xy(x – y)
(2a − 3b)= (2a)3 − (3b)3 – (3 × 2a × 3b)(2a – 3b)
= 8a3 – 27b3 – 18ab(2a – 3b)
= 8a3 – 27b3 – 36a2b + 54ab2

(iii) \mathbf{\left [ \frac{3}{2}x + 1\right ]^3}

Using identity, (x + y)3 = x3 + y3 + 3xy(x + y)
\left [ \frac{3}{2}x + 1\right ]^3 = \left ( \frac{3}{2}x \right )^3 + 13 + (3× \frac{3}{2}x × 1)(\frac{3}{2}x + 1)

= \frac{27}{8}x^3 + 1 + \frac{9}{2}x \left ( \frac{3}{2}x +1 \right )

= \frac{27}{8}x^3 + 1 + \frac{27}{4}x^2 + \frac{9}{2}x

= \frac{27}{8}x^3 + \frac{27}{4}x^2 + \frac{9}{2}x + 1

(iv) \mathbf{\left [ x-\frac{2}{3}y \right ]^3}
Using identity, (x – y)3 = x3 – y3 – 3xy(x – y)

\left [ x-\frac{2}{3}y \right ]^3 = x\left ( \frac{2}{3}y \right )^3 – (3 × x × \frac{2}{3}y ) (x – \frac{2}{3}y )

= x\frac{8}{27}y^3 – 2xy (x – \frac{2}{3}y )

= x\frac{8}{27}y^3 – 2x2y + \frac{4}{3}xy^2

7. Evaluate the following using suitable identities:
(i) (99)3
(ii) (102)3
(iii) (998)3

Answer –

(i) (99)3
We have, 99 = (100 -1)
∴ 993 = (100 – 1)3
= (100)3 – 13 – 3(100)(1)(100 -1)
[Using (a – b)3 = a3 – b3 – 3ab (a – b)]
= 1000000 – 1 – 300(100 – 1)
= 1000000 -1 – 30000 + 300
= 1000300 – 30001
= 970299

(ii) (102)3
We have, 102 =100 + 2
∴ 1023 = (100 + 2)3
= (100)3 + (2)3 + 3(100)(2)(100 + 2)
[Using (a + b)3 = a3 + b3 + 3ab (a + b)]
= 1000000 + 8 + 600(100 + 2)
= 1000000 + 8 + 60000 + 1200
= 1061208

(iii) (998)3
We have, 998 = 1000 – 2
∴ (998)3 = (1000-2)3
= (1000)3– (2)3 – 3(1000)(2)(1000 – 2)
[Using (a – b)3 = a3 – b3 – 3ab (a – b)]
= 1000000000 – 8 – 6000(1000 – 2)
= 1000000000 – 8 – 6000000 + 12000
= 994011992

8. Factorise each of the following:
(i) 8a3 + b3 + 12a2b + 6ab2
(ii) 8a3 – b3 – 12a2b + 6ab2
(iii) 27 – 125a3 – 135a + 225a2
(iv) 64a3 – 27b3 – 144a2b + 108ab2
(v) 27p3 \mathbf{\frac{1}{216}}\mathbf{\frac{9}{2}}p2 + \mathbf{\frac{1}{4}}p

Answer –

(i) 8a3 + b3 + 12a2b + 6ab2
= (2a)3 + (b)3 + 6ab(2a + b)
= (2a)3 + (b)3 + 3(2a)(b)(2a + b)
= (2a + b)3                                        [Using a3 + b3 + 3 ab(a + b) = (a + b)3]
= (2a + b)(2a + b)(2a + b)

(ii) 8a3 – b3 – 12a2b + 6ab2
= (2a)3 – (b)3 – 3(2a)(b)(2a – b)
= (2a – b)3                                      [Using a3 + b3 + 3 ab(a + b) = (a + b)3]
= (2a – b)(2a – b)(2a – b)

(iii) 27 – 125a3 – 135a + 225a2
= (3)3 – (5a)3 – 3(3)(5a)(3 – 5a)
= (3 – 5a)3                                    [Using a3 + b3 + 3 ab(a + b) = (a + b)3]
= (3 – 5a)(3 – 5a)(3 – 5a)

(iv) 64a3 – 27b3 – 144a2b + 108ab2
= (4a)3 – (3b)3 – 3(4a)(3b)(4a – 3b)
= (4a – 3b)3                                [Using a3 – b3 – 3 ab(a – b) = (a – b)3]
= (4a – 3b)(4a – 3b)(4a – 3b)

(v) 27p3 \mathbf{\frac{1}{216}}\mathbf{\frac{9}{2}}p2 + \mathbf{\frac{1}{4}}p

= (3p)3 \left ( \frac{1}{6} \right )^3\left ( \frac{9}{2} \right )p2 + \frac{1}{4}p

= (3p)3 \left ( \frac{1}{6} \right )^3 − 3(3p×\frac{1}{6})(3p – \frac{1}{6})                        Using (x – y)3 = x3 – y3 – 3xy (x – y)
Taking x = 3p and y = \frac{1}{6}

= (3p – \frac{1}{6})3

= (3p – \frac{1}{6})(3p – \frac{1}{6})(3p – \frac{1}{6})

9. Verify:
(i) x3 + y= (x + y)(x2 – xy + y2)
(ii) x3 – y= (x – y)(x2 + xy + y2)

Answer –
(i) x3 + y= (x + y)(x2 – xy + y2)
We know that, (x + y)3 = x3 + y3 + 3xy(x + y)
⇒ x3 + y= (x + y)3 – 3xy(x + y)
⇒ x3 + y= (x+y)[(x + y)2–3xy]
Taking (x + y) common
⇒ x3 + y= (x + y)[(x2 + y2 + 2xy) – 3xy]
⇒ x3 + y= (x + y)(x2 + y2 – xy)

(ii) x3 – y= (x – y)(x2 + xy + y2)
We know that, (x – y)3 = x3 – y3 – 3xy(x – y)
⇒ x3 − y= (x – y)3 + 3xy(x – y)
⇒ x3 − y= (x – y)[(x – y)2 + 3xy]
Taking (x + y) common
⇒ x3 − y= (x – y)[(x2 + y2 – 2xy) + 3xy]
⇒ x3 + y= (x – y)(x2 + y2 + xy)

10. Factorize each of the following:
(i) 27y3 + 125z3
(ii) 64m3 – 343n3

Answer –
(i) 27y3 + 125z3
We have, 27y3 + 125z3 = (3y)3 + (5z)3
We know that, x3 + y= (x + y)(x2 – xy + y2)
27y3 + 125z= (3y)3 + (5z)3
= (3y + 5z)[(3y)2 – (3y)(5z) + (5z)2]
= (3y + 5z)(9y2 – 15yz + 25z2)

(ii) 64m3–343n3
We have, 64m3 – 343n3 = (4m)3 – (7n)3
We know that, x3 – y3 = (x – y)(x2 + xy + y2)
64m3 – 343n= (4m)3 – (7n)3
= (4m – 7n)[(4m)2 + (4m)(7n) + (7n)2]
= (4m – 7n)(16m2 + 28mn + 49n2)

11. Factorise : 27x3 + y3 + z3 – 9xyz 

Answer –
We have, 27x3 + y3 + z3 – 9xyz = (3x)3 + (y)3 + (z)3 – 3(3x)(y)(z)
Using the identity, x3 + y3 + z3 – 3xyz = (x + y + z)(x2 + y2 + z2 – xy – yz – zx)
We have, (3x)3 + (y)3 + (z)3 – 3(3x)(y)(z)
= (3x + y + z)[(3x)3 + y3 + z3 – (3x × y) – (y × 2) – (z × 3x)]
= (3x + y + z)(9x2 + y2 + z2 – 3xy – yz – 3zx)

12. Verify that: x3 + y3 + z3 – 3xyz = \mathbf{\frac{1}{2}}(x + y + z)[(x – y)2 + (y – z)2 + (z – x)2]

Answer –   We know that, x3 + y3 + z3 − 3xyz = (x + y + z)(x2 + y2 + z2 – xy – yz – xz)
⇒ x3 + y3 + z3 – 3xyz = \frac{1}{2}(x + y + z)[2(x2 + y2 + z2 – xy – yz – xz)]
= \frac{1}{2} (x + y + z)(2x2 + 2y2 + 2z2 – 2xy – 2yz – 2xz)

= \frac{1}{2}(x + y + z)[(x2 + y2 − 2xy) + (y2 + z2 – 2yz) + (x2 + z2 – 2xz)]

= \frac{1}{2}(x + y + z)[(x – y)2 + (y – z)2 + (z – x)2]

13. If  x + y + z = 0, show that x3 + y3 + z= 3xyz.

Answer – Since, x + y + z = 0
⇒ x + y = -z
⇒ (x + y)3 = (-z)3
⇒ x3 + y3 + 3xy(x + y) = -z3
⇒ x3 + y3 + 3xy(-z) = -z3 [∵ x + y = -z]
⇒ x3 + y3 – 3xyz = -z3
⇒ x3 + y3 + z3 = 3xyz
Hence, if x + y + z = 0, then
x3 + y3 + z3 = 3xyz

14. Without actually calculating the cubes, find the value of each of the following:
(i) (−12)3 + (7)3 + (5)3
(ii) (28)3 + (−15)3 + (−13)3

Answer –

(i) (−12)3 + (7)3 + (5)3
Let x = −12, y = 7 and z= 5
We know that if x + y + z = 0, then x3 + y3 + z3 = 3xyz.
Here, −12 + 7 + 5 = 0
(−12)3 + (7)3 + (5)= 3xyz
= 3 × -12 × 7 × 5
= -1260

(ii) (28)3 + (−15)3 + (−13)3
Let x = 28, y= −15 and z = −13
We know that if x + y + z = 0, then x3 + y3 + z= 3xyz.
Here, x + y + z = 28 – 15 – 13 = 0
(28)3 + (−15)3 + (−13)= 3xyz
= 0 + 3(28)(−15)(−13)
= 16380

15. Give possible expressions for the length and breadth of each of the following rectangles, in which their areas are given:
(i) Area : 25a2 – 35a + 12
(ii) Area : 35y2 + 13y – 12

Answer –
Area of a rectangle = (Length) x (Breadth)
(i) Area : 25a2 – 35a + 12
25a2 – 35a + 12
= 25a2 – 20a – 15a + 12
= 5a(5a – 4) – 3(5a – 4)
= (5a – 4)(5a – 3)
Possible expression for length  = 5a–4

Possible expression for breadth  = 5a –3

(ii) Area : 35y2 + 13y – 12
35y2+ 13y -12
= 35y2 + 28y – 15y – 12
= 7y(5y + 4) – 3(5y + 4)
= (5y + 4)(7y – 3)
Possible expression for length  = (5y+4)
Possible expression for breadth  = (7y–3)

16. What are the possible expressions for the dimensions of the cuboids whose volumes are given below?
(i) Volume : 3x2 – 12x
(ii) Volume : 12ky2 + 8ky – 20k

Answer –
Volume of a cuboid = (Length) x (Breadth) x (Height)

(i) Volume : 3x2–12x
We have, 3x2 – 12x = 3(x2 – 4x)
= 3 × x × (x – 4)
Possible expression for length = 3
Possible expression for breadth = x
Possible expression for height = (x – 4)

(ii) Volume : 12ky2 + 8ky – 20k
We have, 12ky2 + 8ky – 20k
= 4[3ky2 + 2ky – 5k]
= 4[k(3y2 + 2y – 5)]
= 4 × k × (3y2 + 2y – 5)
= 4k[3y2 – 3y + 5y – 5]
= 4k[3y(y – 1) + 5(y – 1)]
= 4k[(3y + 5) × (y – 1)]
= 4k × (3y + 5) × (y – 1)
Possible expression for length = 4k
Possible expression for breadth = (3y +5)
Possible expression for height = (y – 1)

 

Leave a Reply

Your email address will not be published.

Latest from Class 9 Maths