NCERT Solutions Class 9 Maths
Chapter – 2 (Polynomials)
The NCERT Solutions in English Language for Class 9 Mathematics Chapter – 2 Polynomials Exercise 2.3 has been provided here to help the students in solving the questions from this exercise.
Chapter 2: Polynomials
- NCERT Solution Class 9 Maths Ex – 2.1
- NCERT Solution Class 9 Maths Ex – 2.2
- NCERT Solution Class 9 Maths Ex – 2.4
- NCERT Solution Class 9 Maths Ex – 2.5
Exercise – 2.3
1. Find the remainder when x3 + 3x2 + 3x + 1 is divided by
(i) x + 1
(ii) x − 1/2
(iii) x
(iv) x + π
Answer –
(i) x + 1
The zero of x + 1 = 0
⇒ x = −1
Let p(x) = x3 + 3x2 + 3x +1
∴ p(-1) = (-1)3 + 3(-1)2 + 3(-1) +1
⇒ -1 + 3- 3 + 1
⇒ 0
Thus, the required remainder = 0
(ii) x−1/2
The zero of x − 1/2 = 0
⇒ x = 1/2
Let p(x) = x3 + 3x2 + 3x +1
p(1/2) = (1/2)3 + 3(1/2)2 + 3(1/2) + 1
⇒ (1/8) + (3/4) + (3/2) + 1
⇒ LCM of 8, 4 and 2 = 8
⇒
⇒
Thus, the required remainder =
(iii) x
The zero of x = 0
⇒ x = 0
Let p(x) = x3 + 3x2 + 3x +1
p(0) = (0)3+3(0)2+3(0)+1
⇒ 1
Thus, the required remainder = 1.
(iv) x + π
The zero of x + π = 0
⇒ x = – π
Let p(x) = x3 + 3x2 + 3x +1
p(π) = (−π)3 +3(−π)2 + 3(−π) + 1
⇒ −π3 + 3π2 − 3π + 1
Thus, the required remainder is -π3 + 3π2 – 3π + 1.
(v) 5 + 2x
The zero of 5 + 2x = 0
⇒ x = – 5/2
Let p(x) = x3 + 3x2 + 3x +1
p(-5/2) = (-5/2)3 + 3(-5/2)2 + 3(-5/2) + 1
⇒ (-125/8) + (75/4) – (15/2) + 1
⇒ LCM of 8, 4 and 2 = 8
⇒
⇒
Thus, the required remainder is .
2. Find the remainder when x3 − ax2 + 6x − a is divided by x – a.
Answer –
Let p(x) = x3 − ax2 + 6x − a
x − a = 0
∴ x = a
The remainder:
p(a) = (a)3 − a(a2) + 6(a) − a
= a3 − a3 + 6a − a
= 5a
3. Check whether 7 + 3x is a factor of 3x3 + 7x.
Answer –
Let p(x) = 3x3 + 7x
7 + 3x = 0
⇒ 3x = −7
⇒ x = -7/3
∴ The remainder:
p(-7/3) = 3(-7/3)3 + 7(-7/3)
⇒ -(343/9) + (-49/3)
⇒ LCM of 9 and 3 = 9
⇒
⇒ ≠ 0
∴ 7 + 3x is not a factor of 3x3 + 7x.