UKSSSC Police Head Constable (Mukhya Aarakshi) Telecommunication 2022 (Answer Key)

UKSSSC Police Head Constable (Mukhya Aarakshi) Telecommunication Exam 31 July 2022 (Official Answer Key)

41. The derivative of the product of two functions u and v is:
(A) \frac{d}{dx} (u.v) = u.\frac{du}{dx} +v.\frac{dv}{dx}

(B) \frac{d}{dx} (u.v) = u.\frac{dv}{dx} +v.\frac{du}{dx}

(C) \frac{d}{dx} (u.v) = \frac{du}{dx}.\frac{dv}{dx}

(D) None of the above

42. The equation of the line that goes parallel to the x-axis and from the origin is:
(A) x/0 = y/1 = z/0
(B) x/0 = y/0 = z/0
(C) x/1 = y/0 = z/0
(D) x/0 = y/0 = z/1

43. The polar form of \mathbf{(i^{25})^3} is :
(A) cos π + i sin π
(B) cos π/2 + i sin π/2
(C) cos π – i sin π
(D) cos π – i sin π/2

44. If \mathbf{\left | \begin{matrix} 2 & &3 \\ 4 & &5 \end{matrix} \right |}  = \left | \begin{matrix} x & &3 \\ 2x & &5 \end{matrix} \right |then the value of x will be :
(A) 2
(B) 4
(C) 3
(D) 5

45. On what principle does the dynamo work?
(A) Electro magnetic induction
(B) Induced current
(C) Induced magnetism
(D) None of the above

46. The maximum value of angle of dip is :
(A) 0°
(B) 90°
(C) 45°
(D) 60°

47. The eccentricity (e) of an ellipse satisfies which of the following condition?
(A) e < 0
(B) 0 < e <l
(C) e = 1
(D) e > 1

48. A = {1, 2, 3}, then number of equivalence relations containing (1, 2) will be
(A) 1
(B) 2
(C) 3
(D) 4

49. If ‘θ’ is angle between the two vectors is \mathbf{\vec{a}} and \mathbf{\vec{b}} such that \left | \mathbf{\vec{a}}.\mathbf{\vec{b}} \right | = \left | \mathbf{\vec{a}} \times \mathbf{\vec{b}} \right |, when the value of θ will be
(A) 0
(B) π/4
(C) π/2
(D) π

50. The value of \mathbf{\int_{0}^{\pi/2}sin2x dx} will be.
(A) 0
(B) π/2
(C) ½
(D) 1

51. Differentiation of function \mathbf{e^{e^{x}}} with respect to x, will be :
(A) ex
(B) e^{e^{x}}. ex
(C) e-x
(D) e^{x^{2}}

52. \mathbf{x^2 \frac{d^3y}{dx^3} + x\frac{d^2y}{dx^2} + y\frac{dy}{dx} = 0}, its order and degree will be
(A) Order 3 Degree 1
(B) Degree 2 Order 3
(C) Order 3 Degree 3
(D) None of the above

53. The value of \mathbf{\int e^x \left ( logx+\frac{1}{x} \right )dx} will be :
(A) e^x log x+C
(B) \frac{e^x}{x} + C

(C) e^x +C
(D) e^x \left (\frac{1}{x} - \frac{1}{x^2}\right) +C

54. The velocity of sound on rainy days as compared to other days:
(A) increases
(B) decreases
(C) remains same
(D) none of the above

55. Principal value of \mathbf{sin^{-1}\left (- \frac{1}{2} \right )} will be:
(A) π/6
(B) π/3
(C) -π/6
(D) -π/3

56. If matrix \mathbf{A = \begin{vmatrix} 1 & 8\\ 2 & 7 \end{vmatrix}}, then:
(A) (A + A’) is a symmetric matrix
(B) (A + A’) is a skew symmetric matrix
(C) (A – A’) is a null matrix
(D) (A – A’) is an identity matrix

57. If P(A) = 7/13, P(B) = 9/13 and P(A ∩ B) = 4/13 then the value of P(A/B) will be.
(A) 4/9
(B) 5/9
(C) 3/9
(D) 2/9

58. The function \mathbf{f(x) = \frac{4-x^2}{4x-x^3}} is
(A) discontinuous at only one point
(B) discontinuous at exactly two points
(C) discontinuous at exactly three points
(D) none of the above

59. The value of 2 sin 5θ.cosθ will be :
(A) sin 6θ + cos 4θ
(B) sin 6θ – sin 4θ
(C) sin 6θ + sin 4θ
(D) cos 6θ + cos 4θ

60. If the mass of the bob of a simple pendulum is doubled, then its time period would become :
(A) Double
(B) Four times
(C) Remains unchanged
(D) Half

Related Posts

Leave a Reply

Your email address will not be published. Required fields are marked *